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A large component of the total anthropogenic methane 
budget may be due to relatively few “fat-tailed” emitters.

Duren et al. (2019)
Methane emissions (kg/h)

Log distribution of point source emissions from the California Methane Survey

Landfills are largest single point source
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Monitoring/mitigation of methane emissions will require 
combining multiple observations: example in Los Angeles.

How do we leverage all this information into one data system?
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How do we combine these data streams together?

Multi-tier data 
assimilation

Independent point 
source flux 

quantification
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Total basin sensitivity to emissions depends on type of instrument and spatial/temporal density

Footprints (∂F/ ∂x) simulated 
using HRRR-STILT tracer-

transport model
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Though TROPOMI is less 
sensitive to surface emissions, it 

has greater spatial coverage 
throughout the basin. 
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We use a Gaussian Bayesian inverse system to relate derive estimates of emission rates.

𝐽 𝐱 = 𝐲 − 𝐇𝐱 !𝐑"# 𝐲 − 𝐇𝐱 + 𝐱 − 𝐱𝐀 !𝐒"# 𝐱 − 𝐱𝐀

*𝐱 = 𝐱𝐀 + 𝐆 𝐲 − 𝐇𝐱 𝐆 =
𝜕*𝐱
𝜕𝐲 = 𝐒𝐀 𝐇! 𝐇𝐒𝐀𝐇! + 𝐑 "#

𝐡% =
𝜕𝑦%
𝜕𝐱

!
y% = 𝐡% ⋅ 𝐱 + ϵ

Derived via STILT Observation Simulation
Error

Put everything together into a cost function that balances a fit to the observations and prior information

Model/Data 
mismatch

Prior emission 
inventory

R, S: error 
covariance 
matrices

Minimizing cost function gives “optimal“ answer (!𝐱):

Gain matrix

𝐀 =
𝜕*𝐱
𝜕𝐱 = 𝐆𝐇where

Averaging kernel
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All observations and footprints can be brought together in an 
inverse modeling framework to optimize gridded flux emissions:

Sunshine Canyon 
Landfill, Aliso 

Canyon oil/gas

Sunset/Hunington beach oil/gas fields 

San Gabriel 
Mountains



300

200

100

0

-100

200

3000

2500

2000

1500

1000

500 

Trend in Sunshine Canyon CH4 emission flux
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We can use the inverse result to target specific areas. 
Case study: Sunshine Canyon Landfill 

Emissions around 
Sunshine Canyon 

higher than EPA prior 
early in study period
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This tells us where 
to go fly AVIRIS-NG

AVIRIS-NG Sunshine Canyon Landfill!𝐱 March-April 2017

Massive methane plumes emanating from intermediate 
slopes. So we called them on the phone…



JPL shared the AVIRIS-NG data with the Sunshine Local Enforcement Agency. 
They determined that the plumes originated from past management practices. 

Past practice:

- For every “lift” of trash, 9 inches of 
compacted soil was placed as cover 
before next lift was added.

-Problem: this did not allow for 
leachate to percolate to bottom of 
cell, causing gas buildup near surface.



Sunshine Canyon then underwent expensive infrastructure investments to reduce these emissions.

Solution: Apply ClosureTurf (e.g., artificial grass), PosiShell (cement, bentonite, fiber 
spray mix), or compacted vegetative cover to problematic slopes.
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PosiShell

Compacted cover

Feb 2017

June 2017

Feb 2019



Improvements were validated by AVIRIS-NG. Odor complaints were reduced as well!

Methane plumes after infrastructure improvements
Trend in intermediate slope IME and odor complaints

IME: Measure of excess methane plume mass 
retrieved by AVIRIS-NG 



One step further:

How can I develop a theoretical surface monitoring system 
that will account for freely available satellite information? 

- Use inversion of TROPOMI data to see where you 
are already getting good information about 
methane emitters.

- Where you aren’t getting good information, plan 
deployment of surface monitors around that.



Tool to help us: VISTA-LA provides geolocations and metadata about methane point sources.

Large facilities:
Compressor stations 
Landfills
oil/gas processing plants 
wastewater treatment plans

Small facilities:
Oil/gas wells

Not pictured:
Pipelines
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𝜕$𝐱
𝜕𝐱 = 𝐆𝐇

Combining VISTA-LA data with information from inversion tells us 
which emitters have partial constraint via space-based monitoring.

Reminder:

Averaging kernel tells 
us how much a grid 

cell is relying on 
observations or the 

prior in the inversion.

We choose new theoretical towers based on a spatial clustering of 
VISTA-LA elements that don’t have much averaging kernel sensitivity
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New multi-tiered system theoretically has better 
coverage of VISTA-LA locations that before.

Increased overlap between 
VISTA-LA elements at higher 
contour levels shows the new 

system more sensitive to 
potential methane emitters.



We can summarize our findings in a series of steps 
for implementing a data strategy:

Step 1: Develop a GIS database of potential methane sources.

Step 2: Simulate footprints for TROPOMI within the domain. 

Step 3: Perform an atmospheric inversion using TROPOMI receptors and derive an 
estimate for the averaging kernel matrix A.

Step 4: Identify which point sources fall outside the ~0.10 threshold contours of A. 
Perform a spatial clustering algorithm for non-overlapping point sources, using as many 
cluster centers as surface monitors that are available for deployment.  

Step 5: Perform a multi-tiered atmospheric inversion to identify methane hotspots.

Step 6: Deploy mobile or airborne monitoring around individual point sources in 
regions that the multi-tiered inverse identified as anomalous.

Step 7: Engage with local stakeholders to report findings and develop a mitigation 
strategy (e.g., Sunshine Canyon Landfill Case Study, Section 4.2).



Conclusions

• Multiple independent methane observations can be synthesized on a 
regional scale via a data assimilation / lagrangian transport model system.

• A multiple step strategy is proposed for creating new multi-tiered networks

• Independent AVIRIS-NG flights at Sunshine Canyon Landfill corroborated 
the inverse product from the multi-tiered inverse system.

• Future spaceborne imaging spectrometers will be able to detect very large 
methane sources. 


